Quantitating Fluorescence Intensity from Fluorophore: The Definition of MESF Assignment
نویسندگان
چکیده
The quantitation of fluorescence radiance may at first suggest the need to obtain the number of fluorophore that are responsible for the measured fluorescence radiance. This goal is beset by many difficulties since the fluorescence radiance depends on three parameters 1) the probability of absorbing a photon (molar extinction), 2) the number of fluorophores, and 3) the probability of radiative decay of the excited state (quantum yield). If we use the same fluorophore in the reference solution and the analyte then, to a good approximation, the molar extinction drops out from the comparison of fluorescence radiance and we are left with the comparison of fluorescence yield which is defined as the product of fluorophore concentration and the molecular quantum yield. The equality of fluorescence yields from two solutions leads to the notion of equivalent number of fluorophores in the two solutions that is the basis for assignment of MESF (Molecules of Equivalent Soluble Fluorophore) values. We discuss how MESF values are assigned to labeled microbeads and by extension to labeled antibodies, and how these assignments can lead to the estimate of the number of bound antibodies in flow cytometer measurements.
منابع مشابه
Quantitating Fluorescence Intensity From Fluorophore: Assignment of MESF Values
A procedure is presented to convert the comparison of measured fluorescence signals into a comparison of fluorescence yields (FY). The fluorescence yield, which is a property of a solution or a suspension, is defined as the product of the fluorophore concentration and the molecular quantum yield. The paper revises the measurement model which relates the measured fluorescence signal to the FY. T...
متن کاملQuantitating Fluorescence Intensity From Fluorophores: Practical Use of MESF Values
The present work uses fluorescein as the model fluorophore and points out critical steps in the use of MESF (Molecules of Equivalent Soluble Fluorophores) values for quantitative flow cytometric measurements. It has been found that emission spectrum matching between a reference solution and an analyte and normalization by the corresponding extinction coefficient are required for quantifying flu...
متن کاملA Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملThe Synthesis of Poly(amidoamine) Dendrimer: Dyeing and Fluorescence Properties
The synthesis of a new yellow fluorescent 4-(2-methylamino)-ethyloxy-N-PAMAM-1,8-naphthalimide from zero generation has been described. The chemical structure of synthesized dendrimers was confirmed using FT-IR, 1HNMR and DSC techniques. The new materials are comprised of a 1,8-naphthalimide fluorophore having a substituent at C-4 position. The synthesized compounds (P2 and P3) were ...
متن کاملQuantitative flow cytometry of ZAP-70 levels in chronic lymphocytic leukemia using molecules of equivalent soluble fluorochrome.
BACKGROUND ZAP-70 has emerged as a potential pivotal prognostic marker for patients with chronic lymphocytic leukemia (CLL), which could replace immunoglobulin heavy chain mutation status. Although several flow cytometry assays have been described for assessing ZAP-70 in CLL, certain technical and scientific issues remain unsolved, which have prevented results of this crucial test from being re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 107 شماره
صفحات -
تاریخ انتشار 2002